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Charged Spherical Shell in the Field of an 
Abelian Monopole 
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The gravitational field of a charged spherical shell in the presence of a central 
Abelian monopole is calculated. The nonlinearity in the field is represented by 
Born-Infeld Lagrangian that contains both invariants of the electromagnetic 
field. Such a configuration models a gravitationally bound shell of matter and 
charge that may provide a source of gamma-ray bursts now being found in 
extragalatic radiation. 

1. INTRODUCTION 

The past few years have brought a renewed interest in the problem of 
electromagnetism at extremely high fields (Adler, 1971). The discovery of 
the 1.8-MeV ( e + e )  peaks in heavy-ion collisions have prodded theorists 
to suggest that a new phase of QED exists that may or may not have a 
confining structure (Galdi, 1989). The past research in nonlinear electro- 
dynamics was divided into two separate approaches; the first was inspired 
by the Euler-Heisenberg Lagrangian, which represented an effective 
Lagrangian after the virtual fermions were integrated out of the theory 
(Euler and Heisenberg, 1936), while the other approach introduced 
phenomenological Lagrangians of the Born-Infeld type which strove to 
generate a completely finite electromagnetic field (Born and Infeld, 1934). 
The research in gauge theory since the introduction of  the Higgs field as a 
symmetry-breaking agent has demonstrated that gauge-Higgs configurations 
of fields exist that have a topological structure that can be interpreted as 
monopoles or dyons (Prasad and Sommerfield, 1975). Monopole or dyon 
solutions exist whenever a group G is broken to a subgroup with a surviving 
U(1) factor. The far field of  a monopole or dyon can be represented as 
Abelian, wherein the dyon or monopole core contains the non-Abelian 
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structure which dies off in the far field. The physical interest in monopoles 
arose when Rubakov and Callan demonstrated that they could catalyze 
proton decay with strong interaction rates (Callan, 1982). The present wealth 
of data on extragalatic radiation reveals gamma-ray bursts that may have 
an origin in highly nonlinear electromagnetic effects (Ressell and Turner, 
1989). The presently accepted theory is that gamma-ray bursts arise from 
processes within a neutron star, but other processes, such as electromagnetic 
collapse or black hole radiation, may also contribute to these phenomena. 
Motivated by the recent interest in the new phase of QED suggested by the 
1.8-MeV (e+e -) peaks as well as the gamma-ray burst phenomena observed 
in extragalatic radiation, I study in this note the properties of a configuration 
of  charge governed by nonlinear electromagnetic field with an Abelian 
monopole at its center. By matching at the boundaries of a spherical shell 
I calculate the electric and magnetic fields of the configuration as well as 
the gravitational field inside of and within the shell and well as the fields 
outside of the shell. The matching of the ({) component of the metric 
generates an expression for the mass of the shell, while the matching of the 
(4) component  of the metric generates a constraint on the allowed masses 
and charge of the monopole and charged shell. This simplified model is 
meant to serve as a starting point for any more complex models of charged 
matter in the presence of a monopole held together by its own gravitation. 

, C H A R G E D  S H E L L  IN T H E  FIELD O F  A M O N O P O L E  

We begin by writing down the following Born-Infeld-type electro- 
magnetic Lagrangian: 

-8--~ 1+ 16b2 ] - 1  ~ - J . A ~ ' , / - L - g  (2.1) 

Here 
~w/3 It? 17 

j . .  e * .t3* .~  F~,~ = O A .  OAr  

= F . y  , I -  V ~  ' Ox ~ Ox"  

We station a magnetic charge of magnitude Q at r = 0 with mass Mx. For 
the region 0 < r < rl, we have no matter other than the dyon and thus J "  = 0 
and 

O ( e . ~ F o ~ )  = 0 
O X  ~ 

From the existence of a potential, this gives, with F23 = r 2 sin O Br, 

0--- (r2Br) = 0; B~ = q  (2.2) 
Or r 2 
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For the metric we have 

(ds) 2 = e~(dx4)  2 - e A (dr) 2 -  r2(d |  2 -  r 2 sin 2 6) (dr5) 2 

For  the ene rgy-momentum tensor  we have from equat ion (2.1) 

2 OL 

r~-, /~ d og~V 
b [ ( l q  j 12 )1/2]  

= 8--~ b 16b 2 1 g ~  

8 r r ( l + J / b _ i 2 / 1 6 b 2 ) l / 2  8 b 2 ( _ g ) l / 2 ( 2  ) g ~  (2.3) 

(2 b F.~,F~ 
8 vr (1 + J~ b - I2 /1  6 b2) 1/2 1 - ~  g"~ (2.4) 

For  a radial electric and magnet ic  field/=14 = E(r) , /723  = r 2 sin | Br we have 
Tll = T 4. For  r < rl (charge-free region) we have 

--=--8~ 1 + - - - ~ - )  - 1  = TI 

for  r < rl.  
For  the (4). Einstein equat ion we have 

) =  1 - - - =  r 2 -  1 +  - 1  
8~" 

(2.5) ;r ] 2GMx 87rG b r 2 1+2q2 1/2 
r e  - A = r  c2 c 4 8~r - 1  dr 

For  q/r2<< 1 we have, using ~,+A =0 ,  which follows from 7"I = 7"~ and the 
Einstein equations,  upon  approximat ing,  

2q2,~ 1/2 q 2  
1 + ~ l  ~-- 1 + 

br~ /  br 4 

the result 

Gq--2 (2.6) 
e ~ = e -~ = 1 2GMxrc 2 4- r2c4 
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In general 

= + 2 q 2 ' ~  1/2 
e - a = e  ~ 1 2G)(4~ Gb r2 1 - 1  dr (2.7) 

r c  2 

for r < r I . 

The reason we have differentiated between the two masses in equations 
(2.6) and (2.7) lies in the fact that for q/r2<< 1, r <  rl, we can identify Mx 
as the mass of the monopole including its electromagnetic contribution 
because of the form analogous to the Reissner-Nordstr6m solution. 

However, the integral in equation (2.7) will give terms that have a 1/r 
dependence that will add to Mx to give Mx (the total mass). We next go 
to the region r~ < r <  r2. In the presence of electric charge, equation (2.1) 
gives upon variation 

Ox ~ 4 ~ ( l + J / b - I 2 / 1 6 b 2 )  ~/2 

Ie~ t3  F~t3 1 
32~rb(1 + ~  }5-/16b2)i/2j 

= ~ J ~ "  (2.8) 

We choose j 4 =  Po dx4/d$ = Poe ~/2 for rl < r <  r2. Equation (2.8) becomes 

O [4~.(1 r2E(r) 
+ 2B~/b - 2E 2/b - 4E 2B~/b 2) 1/2 

(EUr)Urr2-- 1 
2~b(1 + 2B~/ b - 2E2/ b-4E2B2r/ b2)l/~ J 

= fl0 r2 (2.9) 

Here we have approximated e ~-~ e A-~ 1 in the evaluation of I and the 
expression for ~--g, F ~'~ to allow for an approximate calculation of E. 
Also, since equation (2.2) holds for r~ < r < 1"2, we have 

r2E 

47r(1 + 2q2/ br4- 2E2/ b - 4 E 2  q2/ b2r4) 1/2 

Eq 2 
+ 

2~br2(1 + 2q2/br 4 -  2E2/b - 4EZq2/ b2r 4) 1/2 

po r3 
- + C ( 2 . 1 0 )  

3 
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at r = rl, E = 0; thus, C = - p o r 3 / 3 ,  

1 2 2 2 

(4~ r2q-a~b ~ )  E2= [-~ (r3-r{) 1 

x ( l + 2 q 2  2E 2 4E2q2'~ 
br 4 b b2r 4 ] 

Solving for El4 = E(r), we have 

- -  ( + 2q2~ '/2 
PO (r 3 _ r 3) 1 
3 br 4 ] 

E=F14=[(r2+ q22~2 4 po(r3-r31)(2, 4 q 2 ~ ]  1/2 

kke~r 2rcbr ] 3 -b*-~r4]J 

for rl < r < r 2. 

(2.11) 

(2.12) 

This is a rather compl ica ted  expression for E(r) and any integrals that  
arise will be left in integral form to avoid any unnecessary complicat ions.  
For  the region r > r2 (outside the charge cloud) we have by integrat ion o f  
equat ion (2.8) for  J~ = 0  and using v + A  = 0  for  r >  r2, 

1 r2E 
4~r (1 + 2Ba/ b - 2E2/ b -4E2B~/ b2) 1/2 

1 EB2rr 2 q 
2 rrb (1 + 2B2/b - 2E2/b - 4E 2B2/b 2)'/2 

e 

4~r (2.13) 

where e is the total electric charge o f  the charge cloud. Also, B = q/r 2 for 
r >  r2, since the charge c loud does not  alter the magnet ic  charge o f  the 
central monopole .  Thus,  for  r > r2 

e(1 + 2q2/ br4) 1/2 
n , 4 =  E(r) = [(r2q_2q2/br2)2q_2e2/bq_4e2q2/b2r411/2 (2.14) 

For  the matter  we have T 4=  Co, T 2= T33 = - P  for rl < r <  r2, where we have 
assumed vanishing normal  pressure for the matter  for rl < r < r2. We now 
obtain an expression for  the metric for r > r2 ; f rom equat ion (2.4) we have 

b 2B~ 4E2B~ 2 2. -1  
T]= T'  = 8~- } - -  b b 2 

b [ 2E  2 4E2B2] '/2 
81r(l+2BZ/b) L b b2 j (2.15) 

for  r > r 2. 
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For r > r 2 we have the (4) component of the Einstein equation 

d 8%q 
(r e -") = 1 - - - 2 - -  r2r  (2.16) 

where T 4 is found from equation (2.15), where only the electromagnetic 
field contributes. After integration for r > r2 we find 

e~=e_A= 1 2G(M~+Me) 8~rG r2r]dr (2.17) 
re 2 c4r 

The last term in equation (2.17) will give powers of 1/r 2, 1 / r 3 , . . . ,  and will 
not contribute to the mass of the system. Here we have called the constant 
of integration 

2"~2 ( Mx + Me) 

where Mx + Me represents the mass of the monopole plus the mass of the 
charged shell. We also have for r > r:, Tll = T~ implying h + u = 0 or e-a = e ~ 
for r > r 2 from the (~) and (4) components of the Einstein equations. Thus, 
in equation (2.17) we have e -A = e ~ for r >  rE. 

The last term in equation (2.17), as mentioned, will give powers of 
Ur n with n - 2  and we are allowed to interpret the second term as the total 
mass of the monopole plus charged cloud. For the metric for r < rl we will 
use equation (2.6) assuming that q~ r 2 << I to justify the expansion in equation 
(2.5). For r~ < r < r2 we have for the total energy-momentum tensor 

b [ (  2B~ 2E2 4E2B~ 1/2 ] 
T44=eo+8---~ 1 - I -~ -  b ~ - ]  - 1  

8~ , / I+2B~/b-2EZ/b-4E2B~/b 2 b -~ ] (2.18) 

b [ (  2B~ 2E2 4E2B:~ 1/2 ] 
T1 = ~--~ 1 + ~ -  b ~-~ ] - 1  

b -2E2/b - 4E2B2/b 2 
8 ~ (1 + 2B~/b - 2E2/b - 4E2B2/b 2) 1/2 (2.19) 

T~ = T3 = - P +  b---~ [ ( 1-~ b 2Ezb 4E2B~I/2-1]b 2 ] 

b (2b~ 4E2B~'~ 
8r b2 ] (2.20) 
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Here  we have  set the no rma l  pressure  (Tll = 0) equal  to zero. We also have 
a p p r o x i m a t e d  e ~ = e A - 1 in the express ion  for  the e lec t romagnet ic  energy- 
m o m e n t u m  tensor.  To  solve for  Me, we take the (4) c o m p o n e n t  o f  the 
Einstein equat ions  for  rl < r < r2, 

d (r e-a)= l - ~  -~  (2.21) 

In tegra t ing  f rom rl to r2. we have 

8 , rG  f r2 
( r e - ~ ) r - ( r e - A ) r = r 2 - r l - - - ~ - - j r  ' r2T~4dr (2.22) 

Here  we use (e-A)r2 f rom equat ion  (2.17) at r =  r2 and  (e-X)rl f rom equat ion  
(2.6)  at r = rl and  T 4 f rom equat ion  (2.18) for  the in tegrand in equa t ion  
(2.22). This will a l low us to solve for  the Me (the mass  of  the charged shell). 
To solve for  e ~ for  rl < r <  r2 we have for  the (]) c o m p o n e n t  of  the Einstein 
equat ions  

~ ~R611 - 8 ~ G  R1-~ c4 T11 

o r  

e - ~ -  1 e-~v ' 
r 2 r 

_ 8 o[ (1 

o r  

.+2B~ 2E 2 4E2B~] 1/2 
b -  b - ~ l  

b (-2E2/b -4E2B2/b2) 
8rr (1 + 2B2/b - 2E2/b - 4E2B~/ b2) x/2. 

t 1: m e~-lr 8~  GreA[" " "] 

f 
r e A - 1  

v = dr 
r 

I 8~ll~2B22E24E2B2r~l/2 1 
8,rG r ~ b b b 2 ] 

c '  a r e x b ( - 2 E Z / b  - 4E2B2~/b 2) dr 

8 ~ (1 + 2B2/b - 2E 2/b - 4E292/b 2) x/2 

+ C (2.23) 

F rom equa t ion  (2.21) we have 

8~-G I r (re-~)r-(re-a)r  =(r-rl)-----  ~ r2T44dr rl (2.24) 
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Here we insert (e-a)rl from equation (2.6) and use equation (2.18) for T 4 
for the domain rl < r < r2 ; this gives us e-~ for rl < r < r2. 

Matching equation (2.23) to equation (2.6) for v at r = r~, we have 

ln~(1 2GM~ ~_Gq2~ 
r,c ~ r ~  ~,1 

f ~' e ~ -1 dr 
r 

[ 8~(1-~2B~ 2E2 4E2B~'~l/2 ] 
87rG f r, b b b 2 ,] 

c 4 .I rea b (_2E2/bL4EzB~/b2) dr 
8~  (1+  2 n ~ / b - Z E 2 / b  - 4EeB2r/b2)'/2 

+ C (2.25) 

which determines the constant C in equation (2.23). 
In equation (2.25) we use E in equation (2.12), Br=q/r 2, and e -a 

from equation (2.24) for the expressions for E, br, e -a for r~ < r < r2. 
By matching equation (2.23) to equation (2.17) at r = r 2 we arrive at a 

constraint relating Ms, q, e, Mx. 
Our next task is to find an approximate solution for Me. In both regions 

r~ < r < r2 and r > r2 we will retain terms up to the cubic terms in the electric 
and magnetic charge as well as the electric charge density; we will retain 
terms up to the quartic power  in the fields in the energy-momentum tensor. 

Equation (2.12) gives to third order for r~ < r <  r2 

rV \ r ,'41 ~ 

3 {47rpo]{167r2po]2(2]2{1 r3~2( r~'~ 
+~\-3--}\---S--/ \g/\~-~} \r--F} (2.26) 

And from equation (2.14) for r >  re 

e (  e 2 q2) 
E=-~ 1 br 4 b--~ (2.27) 

For the energy-momentum tensor we have from equation (2.15) for r >  re 

E2+B~I_ 3 _ _ ~ E ,  B4 4 - 3 - - ~ -  
T4= T~ - - -  (2.28) 8~" 16~'b 16~'b 8~rb E2B2 
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For rl < r <  r2 we have from equation (2.18) 

T 4 = E 2 + B ~ +  3 E 4  - B____~_4~ + 3_._~E2B2+e ~ (2.29) 
87r 167rb 167rb 87rb 

To find an approximate solution for Me, we solve for Me from equation 
(2.22) using equation (2.17) at r=r2 for (e-A)r2, and equation (2.6) for 
(e-A)r,. We also substitute T 4 for r2> r >  rl from equation (2.29) using 
equation (2.26) for E and B = q/r2; we also evaluate equation (2.17) for 
e -~ for r >  r2 using T~4 from equation (2.28) and E from equation (2.14) 
and B = q~ r 2. This procedure would give an expression for Me to fourth 
order in the electric charge e and the magnetic charge q. The constraint 
relating Me, e, q, and Me would be found by matching equation (2.23) with 
the known C with equation (2.17) for e ~ at r = r2. 

3. CONCLUSION 

The above procedure has offered us a complete solution to the problem 
of a charged shell in the presence of an Abelian monopole. The model 
Lagrangian used in equation (2.1) is intended to simulate the nonlinearity 
in the field. It is hoped, as mentioned in (Galdi, 1989) that a careful study 
of the gamma-ray bursts from astrophysical objects might reveal the presence 
of nonlinear electromagnetic effects in the stellar-like configurations. Poss- 
ible.probes of  this nonlinearity in addition to the intense gamma-ray bursts 
would be anomalous red shifts dependent on q, e as well as mass parameter 
studies that indicate the possible dependence of the mass of  a series of 
these objects on the electric and magnetic charge of the monopole center 
and the electrically charged shell. 

ACKNOWLEDGMENTS 

I would like to thank the Physics Departments at Williams College 
and Harvard University for the use of their facilities. 

REFERENCES 

Adler, S. A. (1971). Annals of  Physics, 67, 599. 
Born, M., and Infeld, L. (1934). Proceedings of the Royal Society of London, 147, 552. 
Callan, C. G. (1982). Physical Review D, 28, 2058. 
Euler, H., and Heisenberg, W. (1936). Zeitschriftfiir Physics 98, 714. 
Galdi, D. G. (1989). Comments on Nuclear Particle Physics, XIX(3), 137. 
Prasad, M. K., and Sommerfield, C. M. (1975). Physical Review Letters, 35(12), 760. 
Ressell, M. T., and Turner, M. S. (1989). Fermilab Pub 89/214-A. 


